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In 1741, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where
he stayed for 25 years. During this period he wrote landmark books on a relatively new subject
called calculus and a steady stream of papers on mathematics and science. In response to a request
for instruction in science from the Princess of Anhalt-Dessau, he wrote her nearly 200 letters on
science that later became famous in a book titled Letters to a German Princess. When Euler lost
vision in one eye, Frederick thereafter referred to him as his mathematical ‘‘cyclops.’’

In 1766, he happily returned to Russia at the invitation of Catherine the Great. His eyesight
continued to deteriorate and in 1771 he became totally blind following an eye operation.
Incredibly, his blindness made little impact on his mathematics output, for he wrote several
books and over 400 papers while blind. He remained active until the day of his death.

Euler’s productivity was remarkable. He wrote textbooks on physics, algebra, calculus, real
and complex analysis, and differential geometry. He alsowrote hundreds of papers, manywinning
prizes. A current edition of his collected works consists of 74 volumes.

Exercises for Section 3.3

1. Let x1 :¼ 8 and xnþ1 :¼ 1
2 xn þ 2 for n 2 N. Show that ðxnÞ is bounded and monotone. Find the

limit.

2. Let x1 > 1 and xnþ1 :¼ 2% 1=xn for n 2 N. show that ðxnÞ is bounded and monotone. Find the
limit.

3. Let x1 & 2 and xnþ1 :¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xn % 1

p
for n 2 N. Show that ðxnÞ is decreasing and bounded

below by 2. Find the limit.

4. Let x1 :¼ 1 and xnþ1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xn

p
for n 2 N. Show that ðxnÞ converges and find the limit.

5. Let y1 :¼
ffiffiffi
p

p
, where p > 0, and ynþ1 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ yn

p
for n 2 N. Show that ðynÞ converges and find

the limit. [Hint: One upper bound is 1þ 2
ffiffiffi
p

p
.]

6. Let a > 0 and let z1 > 0:Define znþ1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ zn

p
for n 2 N . Show that ðznÞ converges and find

the limit.

7. Let x1 :¼ a > 0 and xnþ1 :¼ xn þ 1=xn for n 2 N . Determinewhether ðxnÞ converges or diverges.
8. Let ðanÞ be an increasing sequence, ðbnÞ be a decreasing sequence, and assume that an ' bn for

all n 2 N . Show that limðanÞ ' limðbnÞ, and thereby deduce the Nested Intervals Property 2.5.2
from the Monotone Convergence Theorem 3.3.2.

9. Let A be an infinite subset of R that is bounded above and let u :¼ sup A. Show there exists an
increasing sequence ðxnÞ with xn 2 A for all n 2 N such that u ¼ limðxnÞ.

10. Establish the convergence or the divergence of the sequence ðynÞ, where

yn :¼
1

nþ 1
þ 1

nþ 2
þ ( ( ( þ 1

2n
for n 2 N :

11. Let xn :¼ 1=12 þ 1=22 þ ( ( ( þ 1=n2 for each n 2 N . Prove that ðxnÞ is increasing and bounded,
and hence converges. [Hint: Note that if k & 2, then 1=k2 ' 1=kðk % 1Þ ¼ 1=ðk % 1Þ % 1=k.]

12. Establish the convergence and find the limits of the following sequences.

(a)
"
ð1þ 1=nÞnþ1#; (b)

"
ð1þ 1=nÞ2n

#
;

(c) 1þ 1

nþ 1

$ %n$ %
; (d)

"
ð1% 1=nÞn

#
:

13. Use the method in Example 3.3.5 to calculate
ffiffiffi
2

p
, correct to within 4 decimals.

14. Use the method in Example 3.3.5 to calculate
ffiffiffi
5

p
, correct to within 5 decimals.

15. Calculate the number en in Example 3.3.6 for n ¼ 2, 4, 8, 16.

16. Use a calculator to compute en for n ¼ 50; n ¼ 100, and n ¼ 1000.
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(d) implies (a). Let w ¼ sup S. If e > 0 is given, then there are at most finitely many n
with wþ e < xn. Therefore wþ e belongs to V and lim sup ðxnÞ % wþ e. On the other
hand, there exists a subsequence of ðxnÞ converging to some number larger than w& e, so
that w& e is not in V, and hence w& e % lim sup ðxnÞ. Since e > 0 is arbitrary, we
conclude that w ¼ lim sup ðxnÞ. Q.E.D.

As an instructive exercise, the reader should formulate the corresponding theorem for
the limit inferior of a bounded sequence of real numbers.

3.4.12 Theorem A bounded sequence ðxnÞ is convergent if and only if lim sup ðxnÞ ¼
lim inf ðxnÞ.

We leave the proof as an exercise. Other basic properties can also be found in the
exercises.

Exercises for Section 3.4

1. Give an example of an unbounded sequence that has a convergent subsequence.

2. Use the method of Example 3.4.3(b) to show that if 0 < c < 1, then limðc1=nÞ ¼ 1.

3. Let ð f nÞ be the Fibonacci sequence of Example 3.1.2(d), and let xn :¼ f nþ1=f n. Given that
limðxnÞ ¼ L exists, determine the value of L.

4. Show that the following sequences are divergent.

(a)
!
1& ð&1Þn þ 1=n

"
; (b) ðsin np=4Þ:

5. Let X ¼ ðxnÞ and Y ¼ ðynÞ be given sequences, and let the ‘‘shuffled’’ sequence Z ¼ ðznÞ be
defined by z1 :¼ x1; z2 :¼ y1; . . . ; z2n&1 :¼ xn; z2n :¼ yn; : . . . Show that Z is convergent if and
only if both X and Y are convergent and lim X ¼ lim Y .

6. Let xn :¼ n1=n for n 2 N .
(a) Show that xnþ1 < xn if and only if ð1þ 1=nÞn < n, and infer that the inequality is valid for

n ' 3. (See Example 3.3.6.) Conclude that ðxnÞ is ultimately decreasing and that x :¼
limðxnÞ exists.

(b) Use the fact that the subsequence ðx2nÞ also converges to x to conclude that x ¼ 1.

7. Establish the convergence and find the limits of the following sequences:

(a)
#
ð1þ 1=n2Þn

2
$
; (b)

!
ð1þ 1=2nÞn

"
;

(c)
#
ð1þ 1=n2Þ2n

2
$
; (d)

!
ð1þ 2=nÞn

"
:

8. Determine the limits of the following.

(a)
!
ð3nÞ1=2n

"
; (b)

!
ð1þ 1=2nÞ3n

"
:

9. Suppose that every subsequence of X ¼ ðxnÞ has a subsequence that converges to 0. Show that
lim X ¼ 0.

10. Let ðxnÞ be a bounded sequence and for each n 2 N let sn :¼ supfxk : k ' ng and S :¼ inffsng.
Show that there exists a subsequence of ðxnÞ that converges to S.

11. Suppose that xn ' 0 for all n 2 N and that lim
!
ð&1Þnxn

"
exists. Show that ðxnÞ converges.

12. Show that if ðxnÞ is unbounded, then there exists a subsequence ðxnk Þ such that
limð1=xnk Þ ¼ 0.

13. If xn :¼ ð&1Þn=n, find the subsequence of ðxnÞ that is constructed in the second proof of the
Bolzano-Weierstrass Theorem 3.4.8, when we take I1 :¼ ½&1; 1).
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14. Let ðxnÞ be a bounded sequence and let s :¼ supfxn : n 2 Ng. Show that if s =2 fxn : n 2 Ng,
then there is a subsequence of ðxnÞ that converges to s.

15. Let ðInÞ be a nested sequence of closed bounded intervals. For each n 2 N , let xn 2 In. Use the
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.

16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence
is dropped.

17. Alternate the terms of the sequences (1þ 1=n) and (%1=n) to obtain the sequence ðxnÞ given by

ð2;%1; 3=2;%1=2; 4=3;%1=3; 5=4;%1=4; . . .Þ:

Determine the values of lim supðxnÞ and lim infðxnÞ. Also find supfxng and inffxng.
18. Show that if ðxnÞ is a bounded sequence, then ðxnÞ converges if and only if lim supðxnÞ ¼

lim infðxnÞ.
19. Show that if ðxnÞ and ðynÞ are bounded sequences, then

lim supðxn þ ynÞ & lim supðxnÞ þ lim supðynÞ:

Give an example in which the two sides are not equal.

Section 3.5 The Cauchy Criterion

TheMonotone Convergence Theorem is extraordinarily useful and important, but it has the
significant drawback that it applies only to sequences that are monotone. It is important for
us to have a condition implying the convergence of a sequence that does not require us to
know the value of the limit in advance, and is not restricted to monotone sequences. The
Cauchy Criterion, which will be established in this section, is such a condition.

3.5.1 Definition A sequence X ¼ ðxnÞ of real numbers is said to be a Cauchy sequence
if for every e > 0 there exists a natural number HðeÞ such that for all natural numbers
n;m ' HðeÞ, the terms xn; xm satisfy jxn % xmj < e.

The significance of the concept of Cauchy sequence lies in the main theorem of this
section, which asserts that a sequence of real numbers is convergent if and only if it is a
Cauchy sequence. This will give us a method of proving a sequence converges without
knowing the limit of the sequence.

However, we will first highlight the definition of Cauchy sequence in the following
examples.

3.5.2 Examples (a) The sequence (1=n) is a Cauchy sequence.
If e > 0 is given, we choose a natural number H ¼ H(e) such that H > 2=e. Then if

m; n ' H, we have 1=n & 1=H < e=2 and similarly 1=m < e=2. Therefore, it follows that
if m; n ' H, then

1

n
% 1

m

!!!!

!!!! &
1

n
þ 1

m
<

e
2
þ e
2
¼ e:

Since e > 0 is arbitrary, we conclude that (1=n) is a Cauchy sequence.

(b) The sequence (1 þ (%1)n) is not a Cauchy sequence.
The negation of the definition of Cauchy sequence is: There exists e0 > 0 such that for

everyH there exist at least one n > H and at least onem > H such that jxn % xmj ' e0. For
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